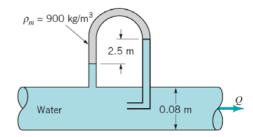
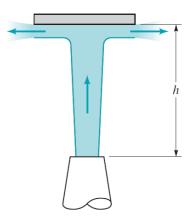
Written exam on Lab-on-a-Chip course, Spring Semester 2009 June 8th, 2009

Examination time: 4 hours (9am – 1pm)


<u>Allowed means</u>: MYO "Fundamentals of Fluid Mechanics", lecture slides and a calculator (no computer or PDAs, please)

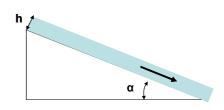
<u>Complete solution</u> should include all equations calculated down to a numerical answer.


Numerical answer alone is not counted as a solution.

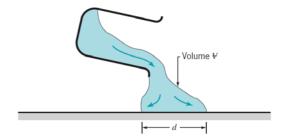
Some <u>useful constants</u> for your problems are listed in the end of the exam paper

Problem 1. Determine flow rate through the pipe shown in the figure.

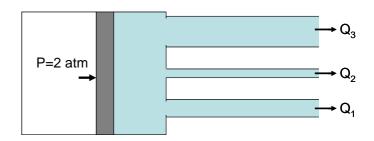
Problem 2. A vertical jet of water leaves a nozzle at a speed of 10 m/s and a diameter of 20mm. It suspends a plate of 1.5 kg. Find the distance h.


Problem 3. The velocity components of a 2D velocity field are given by the equations:

$$u = y^2 - x(1+x)$$


$$v = y(2x+1)$$

- (a) Find the stream function
- (b) Find the acceleration
- (c) Show that the flow is irrotational and satisfies the conservation of mass


Problem 4.Using Navier-Stokes equation, determine relation between the volumetric flow rate and the height \mathbf{h} of the layer of viscous liquid of constant thickness flowing steadily down an infinite inclined plane (inclination angle α). Assume laminar flow and negligible air resistance.

Problem 5. A viscous liquid is poured onto a horizontal plate as shown in the figure. Assume the time t required for the fluid to flow a certain distance d along the plate is a function of a volume poured V, acceleration of gravity g, fluid density ρ and viscosity μ . Determine the set of Pi-terms to describe the process.

Problem 6. Commonly in "industrial" microfluidics, the liquid is propelled by air pressure that can be switched On and Off with a simple valve. In a circuit shown in the figure, the liquid flows through three rectangular channels $50\mu m$, $100 \mu m$ and $200 \mu m$ wide. The height of the channels is equal to $50 \mu m$ and the length is 1 cm. Calculate the volumetric flow rate through each channel at a pressure of 2 atm.

What will be the Re numbers for each channel at this condition?

Problem 7. Electroosmotic effect is used to propel 10mM NaCl solution through a channel that is 200um wide, 50um high and 20mm long. What voltage should be applied between the inlet and the outlet to achieve flow through the channel equal to 1ul/min. Use approximation of flow between two infinite parallel plates, zeta potential on the wall is -100mV

List of constants:

Density of water 1000 kg/m³; Viscosity of water 1·10⁻³ Pa*s

Permittivity of vacuum: ε_0 =8.854·10⁻¹² C/ (N·m²).

Relative permittivity of water ε =78